Author:
Fang Naren,Wang Xuancang,Ye Hongyu,Sun Yaoning,Su Ziyuan,Yuan Lun
Abstract
Shear fatigue damage to the waterproof cohesive layer has not received enough attention in bridge deck pavement design. Meanwhile, there is less theoretical basis for the design of a waterproof cohesive layer. In this study, direct shear and shear fatigue tests were used to compare the shear strength and fatigue performance of waterproof adhesive materials under different disposal schemes for a cement slab surface, bonding materials, and spreading schemes, and the recommended optimal dosage of waterproof adhesive material for the bridge deck is given. Based on the shear fatigue tests results of indoor waterproof adhesive materials, an equation for prediction fatigue at 15 °C was established and temperature correction was applied. Based on these results, we propose a waterproof cohesive layer design method for bridge deck pavement with interlayer shear damage as the design index. The life expectancy of the shear damage between the decks was calculated for a real bridge deck. These results provide scientific guidance for design of a waterproof cohesive layer in a bridge deck, which can effectively extend the service life of a bridge deck.
Funder
Construction of science and technology projects by Ministry of Communications of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献