Adversarial Fusion Network for Forest Fire Smoke Detection

Author:

Li TingtingORCID,Zhang Changchun,Zhu Haowei,Zhang JunguoORCID

Abstract

Recent advances suggest that deep learning has been widely used to detect smoke for early forest fire warnings. Despite its remarkable success, this approach has a number of problems in real life application. Deep neural networks only learn deep and abstract representations, while ignoring shallow and detailed representations. In addition, previous models have been trained on source domains but have generalized weakly on unseen domains. To cope with these problems, in this paper, we propose an adversarial fusion network (AFN), including a feature fusion network and an adversarial feature-adaptation network for forest fire smoke detection. Specifically, the feature fusion network is able to learn more discriminative representations by fusing abstract and detailed features. Meanwhile, the adversarial feature adaptation network is employed to improve the generalization ability and transfer gains of the AFN. Comprehensive experiments on two self-built forest fire smoke datasets, and three publicly available smoke datasets, validate that our method significantly improves the performance and generalization of smoke detection, particularly the accuracy of the detection of small amounts of smoke.

Funder

National Key R&D Program

Publisher

MDPI AG

Subject

Forestry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual fire detection using deep learning: A survey;Neurocomputing;2024-09

2. Factory Fire Detection using TRA-YOLO Network;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

3. A Comparative Exploration of Time Series Models for Wild Fire Prediction;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

4. YOLOv6 for Fire Images detection;2023 International Conference on Cyberworlds (CW);2023-10-03

5. Smoldering charcoal detection in forest soil by multiple CO sensors;Journal of Forestry Research;2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3