Analyzing the Deformation and Fracture of Bioinert Titanium, Zirconium and Niobium Alloys in Different Structural States by the Use of Infrared Thermography

Author:

Sharkeev Yurii,Vavilov Vladimir,Skripnyak Vladimir,Belyavskaya Olga,Legostaeva Elena,Kozulin Alexander,Chulkov Arsenii,Sorokoletov Alexey,Skripnyak Vladimir,Eroshenko Anna,Kuimova Marina

Abstract

Bioinert metals are used for medical implants and in some industrial applications. This study was performed to detect and analyze peculiarities that appear in the temperature distributions during quasi-static tensile testing of bioinert alloys. These alloys include VT1-0 titanium, Zr-1%Nb and Ti-45%Nb in both coarse-grain (CG) and ultrafine-grain (UFG) states. The crystal structure, as well as the crystal domain and grain sizes of these alloys in the UFG state, may be different from the CG versions and identifying the thermal signatures that occur during their deformation and fracture is of interest, as it may lead to an understanding of physical processes that occur during loading. By comparing the surface temperature distributions of specimens undergoing deformation under tensile loading to the distributions at maximum temperatures it was found that the observed differences depend on the alloy type, the alloy structural state and the thermal properties of structural defects in the specimen. Macro-defects were found in some specimens of VT1-0 titanium, Zr-1Nb and Ti-45Nb alloys in both the CG and UFG states. The average tensile strength of specimens containing defects was lower than that of specimens with no defects. Infrared thermography documents change in the thermal patterns of specimens as they are deformed under tensile loading and when the load stops changing or the specimen breaks.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3