Abstract
In this work, 4H SiC samples with a multilayer structure (shallow implanted layer in a lowly doped n-type epitaxial layer grown on a highly doped thick substrate) were investigated by Raman scattering. First, Raman depth profiling was performed to identify characteristic peaks for the different layers. Then, Raman scattering was used to characterize the carrier concentration of the samples. In contrast to the conventional Raman scattering measuring method of the Longitudinal Optical Plasmon Coupled (LOPC) mode, which is only suitable to characterize carrier concentrations in the range from 2 × 1016 to 5 × 1018 cm−3, in this work, Raman scattering, which is based on exciting photons with an energy above the band gap of 4H-SiC, was used. The proposed method was evaluated and approved for different Al-implanted samples. It was found that with increasing laser power the Al-implanted layers lead to a consistent redshift of the LOPC Raman peak compared to the peak of the non-implanted layer, which might be explained by a consistent change in effective photo-generated carrier concentration. Besides, it could be demonstrated that the lower concentration limit of the conventional approach can be extended to a value of 5 × 1015 cm−3 with the approach presented here.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
State key laboratory of precision measuring technology and instruments
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Reference38 articles.
1. Semiconductor Physics: 7th Edition;Liu,2017
2. High-Pressure, High-Temperature Behavior of Silicon Carbide: A Review
3. Studies on silicon carbide;Ramsdell;Am. Mineral.,1947
4. Silicon Carbide Crystal Growth and Defects;Shi,2012
5. Raman Investigation of SiC Polytypes
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献