Mechanism of Nickel, Magnesium, and Iron Recovery from Olivine Bearing Ore during Leaching with Hydrochloric Acid Including a Carbonation Pre-Treatment

Author:

Matus Carlos,Stopic Srecko,Etzold Simon,Kremer DarioORCID,Wotruba Hermann,Dertmann Christian,Telle Rainer,Friedrich Bernd,Knops Pol

Abstract

This work continues on from previous studies showing that mineral sequestration by carbonation of magnesium or calcium silicates under high pressure and high temperature can be successfully carried out by processing in an autoclave. The paper is focused on the influence of experimental parameters on avoiding scale formation during pre-treatment in an autoclave and a subsequent leaching. Amorphous silica and magnesite, respectively, were the main reaction products in a carbonation of olivine under high pressure conditions in an autoclave. In addition, the examined peridotites may be accompanied by small to medium amounts of nickel or other metals, the recovery of which will be investigated in the present study: Extraction of metals such as nickel, iron, and magnesium from olivine bearing ore using hydrochloric acid under atmospheric pressure was studied between 50 and 90 °C in 1 h. The obtained results have shown maximal leaching efficiency of about 35% for Ni, Fe, and Mg under atmospheric pressure, in comparison to more than 60% obtained under the same conditions after a carbonation pre-treatment in an autoclave. Silica gel was formed during leaching without a pre-treatment of peridotite blocking the leaching process, which is not the case for the pre-treated material. The influence of temperature, reaction time, particle size and pre-treatment of peridotite in an autoclave during carbonation at 175 °C and 71.5 bar was studied. A new mechanism model for metal extraction from olivine-bearing ore by avoiding silica gel formation during leaching with hydrochloric acid including a carbonation pre-treatment is proposed. This study explains additionally a behavior of metals such as nickel, magnesium, and iron during a carbonation of olivine bearing ore and leaching of a carbonated solid product.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3