Geological Mapping and Characterization of Possible Primary Input Materials for the Mineral Sequestration of Carbon Dioxide in Europe

Author:

Kremer Dario,Etzold Simon,Boldt Judith,Blaum Peter,Hahn Klaus M.,Wotruba Hermann,Telle Rainer

Abstract

This work investigates the possible mineral input materials for the process of mineral sequestration through the carbonation of magnesium or calcium silicates under high pressure and high temperatures in an autoclave. The choice of input materials that are covered by this study represents more than 50% of the global peridotite production. Reaction products are amorphous silica and magnesite or calcite, respectively. Potential sources of magnesium silicate containing materials in Europe have been investigated in regards to their availability and capability for the process and their harmlessness concerning asbestos content. Therefore, characterization by X-ray fluorescence (XRF), X-ray diffraction (XRD), and QEMSCAN® was performed to gather information before the selection of specific material for the mineral sequestration. The objective of the following carbonation is the storage of a maximum amount of CO2 and the utilization of products as pozzolanic material or as fillers for the cement industry, which substantially contributes to anthropogenic CO2 emissions. The characterization of the potential mineral resources for mineral sequestration in Europe with a focus on the forsterite content led to a selection of specific input materials for the carbonation tests. The mineralogical analysis of an Italian olivine sample before and after the carbonation process states the reasons for the performed evaluation. The given data serves as an example of the input material suitability of all the collected mineral samples. Additionally, the possible conversion of natural asbestos occurring in minerals as a side effect of the carbonation process is taken into consideration.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference23 articles.

1. Synthesis of Magnesium Carbonate via Carbonation under High Pressure in an Autoclave

2. New Thermochemical Approach to the Mechanism, Kinetics and Methodology;L’vov,2007

3. Global CO<sub>2</sub> emissions from cement production

4. Mineralogie: Eine Einführung in die spezielle Mineralogie. Petrologie und Lagerstättenkunde;Okrusch,2014

5. Olivine;Harben,2006

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3