Enhancement of Fatigue Endurance Limit through Ultrasonic Surface Rolling Processing in EA4T Axle Steel

Author:

Wang Xiaodi,Chen Liqin,Liu Peng,Lin Guobiao,Ren Xuechong

Abstract

Fatigue property is a key evaluation index for the service reliability of railway axle. In this work, the effect of ultrasonic surface rolling processing (USRP) on the surface characteristic and fatigue property was investigated in an EA4T axle steel used on high speed trains by several characterization techniques and the staircase method fatigue testing. The surface characteristics were initially studied in EA4T axle steel under different static loads of 1.0 kN, 1.5 kN and 2.0 kN, and served as the important USRP parameter. It was found that the larger static load greatly improved the surface microstructure, microhardness and compressive residual stress, but also increased the surface roughness. Furthermore, the rotating bending fatigue endurance limit of the USRP specimen with a static load of 1.5 kN was obviously enhanced by ~14% (from ~352 MPa to ~401 MPa) relative to the untreated specimen. The enhanced fatigue limit induced by USRP was attributed to the synergistic effect of the grain refinement, as evidenced by transmission electron microscope (TEM) observation, work-hardening, the increased compressive residual stress and the reduced surface roughness. Moreover, the fatigue limit of the USRP specimen was ~4% higher than that of the rolling specimen with turning off the ultrasonic system, ~386 MPa, which showed that the role of the ultrasonic impact could enhance the fatigue property. These findings demonstrate the validity of this technique in modifying the surface characteristics and thus improving the fatigue resistance of axle material, further ensuring its service safety and reliability.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference53 articles.

1. Metal Fatigue in Engineering;Stephens,2001

2. A history of fatigue

3. Mechanical Behavior of Materials;Meyers,2008

4. Bulk Metallic Glasses: An Overview;Miller,2008

5. Improving fatigue resistance of railway axles by cold rolling: Process optimisation and new experimental evidences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3