Study on Fretting Wear Properties of GCr15 Steel Via Ultrasonic Surface Rolling Process

Author:

Sun Xinhua1,Xia Dianxiu1,Zhang Mingyuan11,Wang Shouren1,Zhang Yunhe2,Cai Yuquan3,Si Guyi3,Li Shuqi11,Zhang Xintao11,Zhang Jian11

Affiliation:

1. University of Jinan School of Mechanical Engineering, , Jinan, Shandong 250022 , China

2. Shandong Ruixin Bearing Manufacturing Co., Ltd. , Linqing, Shandong 262665 , China

3. Shandong UXG Bearing MFG Co., Ltd. , Linqing, Shandong 262665 , China

Abstract

Abstract Ultrasonic surface rolling (USR) was applied to GCr15 steel with different static loads and passes to improve the friction and wear properties, and then the fretting wear mechanism of GCr15 steel after USR treatment was systematically investigated. The results showed that the specimens treated by the USR had lower surface roughness and significantly increased compressive residual stress and microhardness. Furthermore, severe plastic deformation occurred in the surface layer of the specimen, which refined the grains and increased the density of high- and low-angle grain boundaries. Besides, the results of the fretting test showed that the USR treated specimens had lower wear volume, dissipated energy, and steady-state friction coefficient. The fretting wear resistance increased with the static load and the number of passes. The fretting wear mechanism changed from abrasive wear and severe adhesive wear to slight fatigue wear and abrasive wear owing to the use of the USR treatment. Surface smoothing and hardening are responsible for the improvement in the fretting wear properties of GCr15 steel for USR treatment.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3