Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering

Author:

Mohsine Ismail1,Kacimi Ilias1ORCID,Abraham Shiny2,Valles Vincent3,Barbiero Laurent45ORCID,Dassonville Fabrice6,Bahaj Tarik1ORCID,Kassou Nadia1,Touiouine Abdessamad7ORCID,Jabrane Meryem7,Touzani Meryem8,El Mahrad Badr1910ORCID,Bouramtane Tarik1ORCID

Affiliation:

1. Geosciences, Water and Environment Laboratory, Faculty of Sciences Rabat, Mohammed V University, Rabat 10000, Morocco

2. Electrical and Computer Engineering Department, Seattle University, Seattle, WA 98122, USA

3. Mixed Research Unit EMMAH (Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes), Hydrogeology Laboratory, Avignon University, 84916 Avignon, France

4. Institut de Recherche pour le Développement, Géoscience Environnement Toulouse, CNRS, University of Toulouse, UMR 5563, 31400 Toulouse, France

5. Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France

6. ARS (Provence-Alpes-Côte d’Azur Regional Health Agency), 132, Boulevard de Paris, CEDEX 03, 13331 Marseille, France

7. Laboratoire de Géosciences, Faculté des Sciences, Université Ibn Tofaïl, BP 133, Kénitra 14000, Morocco

8. National Institute of Agronomic Research, Rabat 10060, Morocco

9. Murray Foundation, Brabners LLP, Horton House, Exchange Street, Liverpool L2 3YL, UK

10. CIMA, FCT-Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal

Abstract

Defining homogeneous units to optimize the monitoring and management of groundwater is a key challenge for organizations responsible for the protection of water for human consumption. However, the number of groundwater bodies (GWBs) is too large for targeted monitoring and recommendations. This study, carried out in the Provence-Alpes-Côte d’Azur region of France, is based on the intersection of two databases, one grouping together the physicochemical and bacteriological analyses of water and the other delimiting the boundaries of groundwater bodies. The extracted dataset contains 8627 measurements from 1143 observation points distributed over 63 GWB. Data conditioning through logarithmic transformation, dimensional reduction through principal component analysis, and hierarchical classification allows the grouping of GWBs into 11 homogeneous clusters. The fractions of unexplained variance (FUV) and ANOVA R2 were calculated to assess the performance of the method at each scale. For example, for the total dissolved load (TDS) parameter, the temporal variance was quantified at 0.36 and the clustering causes a loss of information with an R2 going from 0.63 to 0.4 from the scale of the sampling point to that of the GWB cluster. The results show that the logarithmic transformation reduces the effect of outliers and improves the quality of the GWB clustering. The groups of GWBs are homogeneous and clearly distinguishable from each other. The results can be used to define specific management and protection strategies for each group. The study also highlights the need to take into account the temporal variability of groundwater quality when implementing monitoring and management programs.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3