Differentiation of Multi-Parametric Groups of Groundwater Bodies through Discriminant Analysis and Machine Learning

Author:

Mohsine Ismail1,Kacimi Ilias1ORCID,Valles Vincent2,Leblanc Marc12,El Mahrad Badr134ORCID,Dassonville Fabrice5,Kassou Nadia1,Bouramtane Tarik1ORCID,Abraham Shiny6,Touiouine Abdessamad17ORCID,Jabrane Meryem7,Touzani Meryem8,Barry Abdoul Azize9ORCID,Yameogo Suzanne9,Barbiero Laurent10ORCID

Affiliation:

1. Geosciences, Water and Environment Laboratory, Faculty of Sciences Rabat, Mohammed V University, Rabat 10000, Morocco

2. Mixed Research Unit EMMAH (Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes), Hydrogeology Laboratory, Avignon University, 84916 Avignon, France

3. Murray Foundation, Brabners LLP, Horton House, Exchange Street, Liverpool L2 3YL, UK

4. CIMA, FCT-Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal

5. ARS (Provence-Alpes-Côte d’Azur Regional Health Agency), 132, Boulevard de Paris, CEDEX 03, 13331 Marseille, France

6. Electrical and Computer Engineering Department, Seattle University, Seattle, WA 98122, USA

7. Laboratoire de Géosciences, Faculté des Sciences, Université Ibn Tofaïl, BP 133, Kénitra 14000, Morocco

8. National Institute of Agronomic Research, Rabat, Morocco

9. Geoscience and Environment Laboratory, (LaGE), Department of Earth Sciences, Joseph KI-ZERBO University, Ouagadougou 7021, Burkina Faso

10. Institut de Recherche pour le Développement, Géoscience Environnement Toulouse, CNRS, University of Toulouse, Observatoire Midi-Pyrénées, UMR 5563, 14 Avenue Edouard Belin, 31400 Toulouse, France

Abstract

In order to facilitate the monitoring of groundwater quality in France, the groundwater bodies (GWB) in the Provence-Alpes-Côte d’Azur region have been grouped into 11 homogeneous clusters on the basis of their physico-chemical and bacteriological characteristics. This study aims to test the legitimacy of this grouping by predicting whether water samples belong to a given sampling point, GWB or group of GWBs. To this end, 8673 observations and 18 parameters were extracted from the Size-Eaux database, and this dataset was processed using discriminant analysis and various machine learning algorithms. The results indicate an accuracy of 67% using linear discriminant analysis and 69 to 83% using ML algorithms, while quadratic discriminant analysis underperforms in comparison, yielding a less accurate prediction of 59%. The importance of each parameter in the prediction was assessed using an approach combining recursive feature elimination (RFE) techniques and random forest feature importance (RFFI). Major ions show high spatial range and play the main role in discrimination, while trace elements and bacteriological parameters of high local and/or temporal variability only play a minor role. The disparity of the results according to the characteristics of the GWB groups (geography, altitude, lithology, etc.) is discussed. Validating the grouping of GWBs will enable monitoring and surveillance strategies to be redirected on the basis of fewer, homogeneous hydrogeological units, in order to optimize sustainable management of the resource by the health agencies.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference59 articles.

1. Cumulative Geological, Regional and Site-Specific Factors Affecting Groundwater Quality in Domestic Wells in Finland;Boreal Environ. Res. Monogr.,2001

2. Potential Impacts of Climate Change on Groundwater Resources—A Global Review;Earman;J. Water Clim. Chang.,2011

3. Climate Change and Its Effect on Groundwater Quality;Barbieri;Environ. Geochem. Health,2023

4. The Relationship between Land Use and Groundwater Resources and Quality;Lerner;Land Use Policy,2009

5. Groundwater Quality;Motlagh;Water Environ. Res.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3