Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.)

Author:

Martínez-Maldonado Fabio ErnestoORCID,Castaño-Marín Angela MaríaORCID,Góez-Vinasco Gerardo AntonioORCID,Marin Fabio RicardoORCID

Abstract

Estimating gross primary production (GPP) is important to understand the land–atmosphere CO2 exchange for major agroecosystems. Eddy covariance (EC) measurements provide accurate and reliable information about GPP, but flux measurements are often not available. Upscaling strategies gain importance as an alternative to the limitations of the use of the EC. Although the potato provides an important agroecosystem for worldwide carbon balance, there are currently no studies on potato GPP upscaling processes. This study reports two GPP scaling-up approaches from the detailed leaf-level characterization of gas exchange of potatoes. Multilayer and big leaf approaches were applied for extrapolating chamber and biometric measurements from leaf to canopy. Measurements of leaf area index and photosynthesis were performed from planting to the end of the canopy life cycle using an LP-80 ceptometer and an IRGA Li-Cor 6800, respectively. The results were compared to concurrent measurements of surface–atmosphere GPP from the EC measurements. Big-leaf models were able to simulate the general trend of GPP during the growth cycle, but they overestimated the GPP during the maximum LAI phase. Multilayer models correctly reproduced the behavior of potato GPP and closely predicted both: the daily magnitude and half-hourly variation in GPP when compared to EC measurements. Upscaling is a reliable alternative, but a good treatment of LAI and the photosynthetic light-response curves are decisive factors to achieve better GPP estimates. The results improved the knowledge of the biophysical control in the carbon fluxes of the potato crop.

Funder

ministerio de ciencia tecnologia e innovacion - MINCIENCIAS

Publisher

MDPI AG

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3