Electromyography Gesture Model Classifier for Fault-Tolerant-Embedded Devices by Means of Partial Least Square Class Modelling Error Correcting Output Codes (PLS-ECOC)

Author:

Sarabia Pablo1ORCID,Araujo Alvaro1ORCID,Sarabia Luis Antonio2ORCID,Ortiz María de la Cruz3ORCID

Affiliation:

1. B105 Electronic Systems Lab, Universidad Politécnica de Madrid, 28040 Madrid, Spain

2. Department Mathematics and Computation, Faculty Sciences, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain

3. Department Chemistry, Faculty Sciences, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain

Abstract

Surface electromyography (sEMG) plays a crucial role in several applications, such as for prosthetic controls, human–machine interfaces (HMI), rehabilitation, and disease diagnosis. These applications are usually occurring in real-time, so the classifier tends to run on a wearable device. This edge processing paradigm imposes strict requirements on the complexity classifier. To date, research on hand gesture recognition (GR) based on sEMG uses discriminant classifiers, such as support vector machines and neural networks. These classifiers can achieve good precision; they cannot detect when an error in classification has happened. This paper proposes a novel hand gesture multiclass model based on partial least square (PLS) class modelling that uses an encoding matrix called error correcting output codes (ECOC). A dataset of eight different gestures was classified using this method where all errors were detected, proving the feasibility of PLS-ECOC as a fault-tolerant classifier. Considering the PLS-ECOC model as a classifier, its accuracy, precision, and F1 are 87.5, 91.87, and 86.34%, respectively, similar to those obtained by other authors. The strength of our work lies in the extra information provided by the PLS-ECOC that allows the application to be fault tolerant while keeping a small-size model and low complexity, making it suitable for embedded real-time classification.

Funder

Consejería JCyL

Spanish Ministry of Science and Innovation

Comunidad de Madrid

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3