Abstract
Recent advances in sensor technology and the availability of low-cost and low-power sensors have changed the air quality monitoring paradigm. These sensors are being widely used by scientists and citizens for monitoring air quality at finer spatial-temporal resolution. Such practices are opening up opportunities to enhance the traditional monitoring networks, but at the same time, these sensors are producing large data sets that can become overwhelming and challenging when it comes to the scientific tools and skills required to analyze the data. To address this challenge, an open-source, robust, and cross-platform sensor data analysis toolbox called Vayu is developed that allows researchers and citizens to do detailed and reproducible analyses of air quality data. Vayu combines the power of visualization and statistical analysis using a simple and intuitive graphical user interface. Additionally, it offers a comprehensive set of tools for systematic analysis such as data conversion, interpolation, aggregation, and prediction. Even though Vayu was developed with air quality research in mind, it can be used to analyze different kinds of time-series data.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献