Machine learning and deep learning for blood pressure prediction: a methodological review from multiple perspectives
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Link
https://link.springer.com/content/pdf/10.1007/s10462-022-10353-8.pdf
Reference317 articles.
1. Abderahman HN, Dajani HR, Bolic M, Groza VZ (2017) An integrated blood pressure measurement system for suppression of motion artifacts. Comput Methods Prog Biomed 145:1–10
2. Abrar S, Loo CK, Kubota N, Tahir GA (2020) A personalised blood pressure prediction system using Gaussian mixture regression and online recurrent extreme learning machine. In: 2020 international symposium on community-centric systems (CcS), pp 1–7. IEEE
3. Aguirre N, Grall-Maës E, Cymberknop LJ, Armentano RL (2021) Blood pressure morphology assessment from photoplethysmogram and demographic information using deep learning with attention mechanism. Sensors 21(6):2167
4. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322
5. Ahmad S, Chen S, Soueidan K, Batkin I, Bolic M, Dajani H, Groza V (2012) Electrocardiogram-assisted blood pressure estimation. IEEE Trans Biomed Eng 59(3):608–618
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Blood pressure prediction based on multi-sensor information fusion of electrocardiogram, photoplethysmography, and pressure pulse waveform;Measurement;2025-01
2. Wearable cuffless blood pressure monitoring: From flexible electronics to machine learning;Wearable Electronics;2024-12
3. A blood pressure estimation approach based on single-channel photoplethysmography differential features;Biomedical Signal Processing and Control;2024-11
4. Symmetrical Photoplethysmogram Signal-Based Cuff-Less Blood Pressure Estimation;IEEE Sensors Journal;2024-03-15
5. Video-based beat-by-beat blood pressure monitoring via transfer deep-learning;Applied Intelligence;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3