Influence of Inter-Pass Cooling on Microstructural Evolution and Plastic Deformation of Heavy EH47 Plates

Author:

Wu Junyu,Wang Bin,Wang Bingxing,Misra R. D. K.,Wang Zhaodong

Abstract

Herein, the influence of inter-pass cooling (IC) and conventional two-stage rolling (CTR), on microstructural evolution and plastic deformation behavior of ultra-heavy EH47 plates, is demonstrated. It is reported that the deformation amount and deformation rate, in every deformation pass during rough rolling, at 1/4- and 1/2-thickness of IC steel were higher than the CTR steel. The volume fraction of ferrite and acicular ferrite was 45% and 18%, at 1/4-thickness, and 35% and 50% at 1/2-thickness of IC steel, respectively, whereas the sum of both ferrite phases was smaller than 25% in the CTR steel. The austenite grain boundary area and high-angle grain boundary fraction in the IC steel were higher than the CTR steel. The high density of fine and shapeless pearlite has been observed in IC steel, whereas large-size carbides, with hexagonal structure, have been observed in CTR steel. Compared to the CTR steel, the density of precipitates was apparently lower in IC steel. Two kinds of Nb containing precipitates, such as (Ti, Nb)(C, N) and (Nb, Ti)C, were observed in the tested steels. Total ductility and uniform elongation of the IC steel were higher than the CTR steel. During the tensile process, the crack initiation energy and crack propagation energy of the IC steel were higher than the CTR steel. Moreover, the volume fraction of retained austenite (FCC) was reduced from 7.71% to 0.42% near the tensile fracture in IC steel at 1/4-thickness. In additon, the strain of synergetic plastic deformation of the IC steel was higher than the CTR steel. Meanwhile, compared to the CTR steel, the synergetic plastic deformation of the IC steel occurred at low stress after the yield point, which can be ascribed to the presence of fewer microcracks in the IC steel. Hence, a delayed fracture has been observed in the IC steel plate.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. Container Shipping Network Optimisation Based on Steering Vector Search Pattern

2. Effects of Ca addition on formation behavior of tin particles and HAZ toughness in large heat input welding;Kato;Kobelco Technol. Rev.,2011

3. Characteristics of brittle crack arrest steel plate for large heatinput welding for large container ships;Kaneko;Kobelco Technol. Rev.,2011

4. Toughness and ductility improvement of heavy EH47 plate with grain refinement through inter-pass cooling

5. Stronger, Tougher Steels

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3