Effect of Ultrasonic Vibration in Friction Stir Welding of 2219 Aluminum Alloy: An Effective Model for Predicting Weld Strength

Author:

Xue Fei,He Diqiu,Zhou Haibo

Abstract

Friction stir welding (FSW) is today used as a premier solution for joining non-ferrous metals, although there are many limitations in its application. One of the objectives of this study was to propose an innovative welding technique, namely ultrasonic-assisted friction stir welding (UAFSW) with longitudinal ultrasonic vibration applied to the stirring head. In this paper, UAFSW mechanical properties and microstructure analysis were performed to demonstrate that the fluidity of the weld area was improved and the strengthened phase organization was partially preserved, due to the application of ultrasonic vibration. The addition of 1.8 kW of ultrasonic vibration at 1200 rpm and 150 mm/min welding parameters resulted in a 10.5% increase in the tensile strength of the weld. The ultimate tensile strength of 2219 aluminum alloy UAFSW was analyzed and predicted using mathematical modeling and machine learning techniques. A full factorial design method with multiple regression, random forest, and support vector machine was used to validate the experimental results. In predicting the tensile behavior of UAFSW joints, by comparing the evaluation metrics, such as R2, MSE, RMSE, and MAE, it was found that the RF model was 22% and 21% more accurate in the R2 metric compared to other models, and RF was considered as the best performing machine learning method.

Funder

the National Key Research and Development Project of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3