Sensitivity Evaluation of Time Series InSAR Monitoring Results for Landslide Detection

Author:

He Liming1ORCID,Pei Panke1,Zhang Xiangning1,Qi Ji2,Cai Jiuyang1,Cao Wang1,Ding Ruibo1,Mao Yachun1

Affiliation:

1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

2. School of Geomatics, Liaoning Technical University, Fuxin 123000, China

Abstract

Spaceborne interferometric synthetic aperture radar (InSAR) techniques are important for landslide detection and monitoring; however, several limitations and uncertainties, such as the unique north–south flying direction and side-look radar observing geometry, currently limit the ability of InSAR to credibly detect landslides, especially those related to high and steep slopes. Here, we conducted experimental and statistical analysis on the feasibility of time-series InSAR monitoring for steep slopes using ascending and descending SAR images. First, the theoretical (TGNSS), practical (PGNSS), and terrain (Hterrain) (T-P-H) indices for sensitivity evaluations of the slope displacement monitoring results from time-series InSAR were proposed for slope monitoring. Subsequently, two experimental and statistical studies were conducted for the cases with and without Global Navigation Satellite System (GNSS) monitoring data. Our experimental results of two high and steep open-pit mines showed that the defined theoretical and practical sensitivity indices can quantitatively evaluate the feasibility of ascending and descending InSAR observations in steep-slope deformation monitoring with GNSS data, and the terrain sensitivity index can qualitatively evaluate the feasibility of landslide monitoring results from ascending and descending Sentinel-1 satellite data without GNSS data. We further demonstrate the generalizability of these proposed indices using four landslide cases with both public GNSS and InSAR monitoring data and 119 landslide cases with only InSAR monitoring data. The statistical results indicated that greater indices correlated with higher reliability of the monitoring results, suggesting that these novel indices have wide suitability and applicability. This study can help to improve the practice of slope deformation monitoring using spaceborne InSAR, especially for high and steep slopes.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3