Improvement of Thermal Stability and Photoelectric Performance of Cs2PbI2Cl2/CsPbI2.5Br0.5 Perovskite Solar Cells by Triple-Layer Inorganic Hole Transport Materials

Author:

Liu Yu1,Li Bicui1,Xu Jia1,Yao Jianxi1

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China

Abstract

Conventional hole transport layer (HTL) Spiro-OMeTAD requires the addition of hygroscopic dopants due to its low conductivity and hole mobility, resulting in a high preparation cost and poor device stability. Cuprous thiocyanate (CuSCN) is a cost-effective alternative with a suitable energy structure and high hole mobility. However, CuSCN-based perovskite solar cells (PSCs) are affected by environmental factors, and the solvents of an HTL can potentially corrode the perovskite layer. In this study, a Co3O4/CuSCN/Co3O4 sandwich structure was proposed as an HTL for inorganic Cs2PbI2Cl2/CsPbI2.5Br0.5 PSCs to address these issues. The Co3O4 layers can serve as buffer and encapsulation layers, protecting the perovskite layer from solvent-induced corrosion and enhancing hole mobility at the interface. Based on this sandwich structure, the photovoltaic performances of the Cs2PbI2Cl2/CsPbI2.5Br0.5 PSCs are significantly improved, with the power conversion efficiency (PCE) increasing from 9.87% (without Co3O4) to 11.06%. Furthermore, the thermal stability of the devices is also significantly enhanced, retaining 80% of its initial PCE after 40 h of continuous aging at 60 °C. These results indicate that the Co3O4/CuSCN/Co3O4 sandwich structure can effectively mitigate the corrosion of the perovskite layer by solvents of an HTL and significantly improves the photovoltaic performance and thermal stability of devices.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference55 articles.

1. Monolithic All-perovskite Tandem Solar Cells with Minimized Optical and Energetic Losses;Datta;Adv. Mater.,2022

2. Light-Induced Lattice Expansion Leads to High-Efficiency Perovskite Solar Cells;Tsai;Science,2018

3. Next-Generation Applications for Integrated Perovskite Solar Cells;Bati;Commun. Mater.,2023

4. An Autonomous Wearable Biosensor Powered by a Perovskite Solar Cell;Min;Nat. Electron.,2023

5. (2024, April 02). NREL, Available online: https://www.nrel.gov/pv/interactive-cell-efficiency.html.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3