Author:
Zhao Zhan-Yong,Li Liang,Bai Pei-Kang,Jin Yang,Wu Li-Yun,Li Jing,Guan Ren-Guo,Qu Hong-Qiao
Abstract
In this research, the effect of several heat treatments on the microstructure and microhardness of TC4 (Ti6Al4V) titanium alloy processed by selective laser melting (SLM) is studied. The results showed that the original acicular martensite α′-phase in the TC4 alloy formed by SLM is converted into a lamellar mixture of α + β for heat treatment temperatures below the critical temperature (T0 at approximately 893 °C). With the increase of heat treatment temperature, the size of the lamellar mixture structure inside of the TC4 part gradually grows. When the heat treatment temperature is above T0, because the cooling rate is relatively steep, the β-phase recrystallization transforms into a compact secondary α-phase, and a basketweave structure can be found because the primary α-phase develop and connect or cross each other with different orientations. The residence time for TC4 SLM parts when the treatment temperature is below the critical temperature has little influence: both the α-phase and the β-phase will tend to coarsen but hinder each other, thereby limiting grain growth. The microhardness gradually decreases with increasing temperature when the TC4 SLM part is treated below the critical temperature. Conversely, the microhardness increases significantly with increasing temperature when the TC4 SLM part is treated above the critical temperature.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献