Effect of Heat Treatment on Microstructure and Mechanical Properties of Titanium Alloy Fabricated by Laser–Arc Hybrid Additive Manufacturing

Author:

Chen Yuhang1,Fu Juan1,Zhou Lilong2,Zhao Yong1,Wang Feiyun1,Chen Guoqiang3,Qin Yonghui3ORCID

Affiliation:

1. Provincial Key Laboratory of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. Aerospace Engineering Equipment (Suzhou) Co., Ltd., No. 81 North Guandu Road, Wuzhong District, Suzhou 215104, China

3. Jiangsu Yangzi-Mitsui Shipbuilding Co., Ltd., Taicang 215400, China

Abstract

The tailored thermal heat-treatment process for Ti-6Al-4V alloy manufactured by laser–arc hybrid additive manufacturing can achieve desired microstructures and excellent mechanical properties for components. The effects of different heat treatment regimens on the microstructure and mechanical properties of Ti-6Al-4V alloy manufactured by laser–arc hybrid additive manufacturing are investigated in this study. Utilizing optical microscopy and scanning electron microscopy, we analyze the variations in microstructure with changes in heat-treatment parameters and explore the reasons for the changes in mechanical properties under different solutions’ treatment temperatures and cooling rates. The microstructure of Ti-6Al-4V alloy fabricated via laser–arc hybrid additive manufacturing was primarily composed of Widmanstätten α plate structures and a small amount of acicular martensite α′ within columnar β grains that grew outward from the substrate along the deposition direction. Following solution treatment and aging heat treatment, the microstructure transitioned to a typical high-performance net basket structure with significantly reduced α plate thickness, leading to noticeable enhancements in sample ductility and toughness. Specifically, when the solution treatment and aging treatment regimen was set at 950 °C for 1 h, followed by air cooling, and then aging at 540 °C for 6 h with subsequent air cooling, the average grain size decreased by a factor of two compared to the as-deposited samples, while the impact toughness increased by 66.7%.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3