Analysis of Modal and Vibration Reduction of an Interior Permanent Magnet Synchronous Motor

Author:

Xie ,Xia ,Li ,Li

Abstract

Interior permanent magnet synchronous motors (IPMSMs) have been widely used in a variety of applications. The IPMSM will generate vibration as well as functioning like other traditional motors, which will affect the performance and the durability of the motor itself. The modal and vibration characteristics of the IPMSM and an optimization design to reduce vibration are researched in this paper. The formulas of electromagnetic force are deduced and analyzed, and a finite element model is established. The model is used for modal calculation, and the low order natural frequency is obtained. Then, the modal test is carried out by the hammering method, and the resonance frequency is found by analyzing the results. Eventually, the electromagnetic vibration is analyzed by taking the electromagnetic force as the load condition, the vibration displacement waveform is obtained, and the correctness of the dynamic calculation is verified by vibration tests. In addition, an eccentric tooth edge design is proposed to weaken the dominant radial electromagnetic force and the vibration displacement is compared with the designed prototype. This design method, which could help to reduce the vibration and noise of the IPMSM, has great potential in future applications.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference20 articles.

1. Finite element method modal analysis of driving motor for electric vehicle;Dai;Proc. CSEE,2011

2. Analysis of electromagnetic exciting force and vibration of rotating armature permanent magnet synchronous motor

3. Method for Analyzing Vibrations Due to Electromagnetic Force in Electric Motors

4. Electromagnetic noise characteristics of permanent magnet synchronous motor applied in electric vehicle;Zheng;Trans. China Electrotech. Soc.,2016

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3