Optimal design of rotor structure for vibration and noise reduction in electric vehicle generator

Author:

Guo Dong1,Shi Qingqiao1,Wang Yawen2ORCID,Zhang Xiaoting3,Shen Qiping1

Affiliation:

1. Chongqing University of Technology, Chongqing, China

2. Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, USA

3. Chongqing Tsingshan Industrial, Chongqing, China

Abstract

In order to reduce the vibration noise of an extended-range electric vehicle (EREV) generator, an optimization method based on changing the rotor structure is proposed in this paper. Firstly, the specific optimization scheme is determined by theoretical and simulation analysis to perform skew pole segmentation of the rotor, while using an eccentric pole arc design to determine the optimal parameters with the target of cogging torque. Then, in order to verify the feasibility of the scheme, the main performance of the generator before and after the optimization is analyzed, including radial electromagnetic force wave, counter-electromotive force (counter EMF), electromagnetic torque, and rotor strength. Finally, a high-precision finite element model of the generator was established, the vibration acceleration, as well as the sound pressure level before and after optimization, were calculated, and a noise test was completed. The results show that the optimized scheme significantly weakened the cogging torque of the generator, while reducing the radial electromagnetic force wave and counter EMF distortion rate to a certain extent, and finally significantly improved the vibration and noise performance of the generator.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission

Program for Chongqing Talent Scheme

National Natural Science Foundation of China

Program for Innovation Team at Institution of Higher Education in Chongqing

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3