Sensitivity of Axial Velocity at the Air Gap Entrance to Flow Rate Distribution at Stator Radial Ventilation Ducts of Air-Cooled Turbo-Generator with Single-Channel Ventilation

Author:

Li Yong,Li Weili,Su YingORCID

Abstract

In the design and calculation of a 330 MW water-water-air cooling turbo-generator, it was found that the flow direction of the fluid in the local stator radial ventilation duct is opposite to the design direction. In order to study what physical quantities are associated with the formation of this unusual fluid flow phenomenon, in this paper, a 100 MW air-cooled turbo-generator with the same ventilation structure as the abovementioned models is selected as the research object. The distribution law and pressure of the fluid in the stator radial ventilation duct and axial flow velocity at the air gap entrance are obtained by the test method. After the calculation method is proved correct by experimental results, this calculation method is used to calculate the flow velocity distribution of the outlets of multiple radial ventilation ducts at various flow velocities at air gap inlets. The relationship between the flow distribution law of the stator ventilation ducts and the inlet velocity of the air gap is studied. The phenomenon of backflow of fluid in the radial ventilation duct of the stator is found, and then the influence of backflow on the temperature distribution of stator core and winding is studied. It is found that the flow phenomenon can cause local overheating of the stator core.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference16 articles.

1. Modelling ventilation and cooling of the rotors of salient pole machines

2. Conjugate heat transfer analysis of a salient pole rotor in an air cooled synchronous generator

3. Review on ventilation system of large turbine generator;Shoulu;Energy Res. Inf.,2004

4. Research and performance verification of 150 MW air-cooled turbo-generator ventilation system;Shuang;Large Mot. Technol.,2007

5. Calculation of ventilation and temperature rise of 100–200 MW air-cooled turbo-generator;Dongping;Power Gener. Equip.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3