Full Surface Heat Transfer Characteristics of Stator Ventilation Duct of a Turbine Generator

Author:

Jeon Shinyoung,Son Changmin,Yang Jangsik,Ha Sunghoon,Hwang Kyeha

Abstract

Turbine generators operate with complex cooling systems due to the challenge in controlling the peak temperature of the stator bar caused by Ohm loss, which is unavoidable. Therefore, it is important to characterize and quantify the thermal performance of the cooling system. The focus of the present research is to investigate the heat transfer and pressure loss characteristics of a typical cooling system, the so-called stator ventilation duct. A real scale model was built at its operating conditions for the present study. The direction of cooling air was varied to consider its operation condition, so that there are: (1) outward flow; and (2) inward flow cases. In addition, the effect of (3) cross flow (inward with cross flow case) was also studied. The transient heat transfer method using thermochromic liquid crystals is implemented to measure full surface heat transfer distribution. A series of computational fluid dynamics (CFD) analyses were also conducted to support the observation from the experiment. For the outward flow case, the results suggest that the average Nusselt numbers of the 2nd and 3rd ducts are at maximum 100% and 30% higher, respectively, than the inward flow case. The trend was similar with the effect of cross flow. The CFD results were in good agreement with the experimental data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Ventilation Cooling Design for a Novel 350-MW Air-Cooled Turbo Generator

2. Turbine generator ventilation

3. Numerical Studies on the Flow Field of Stator and Air Gap for Large Air-Cooled Turbo-Generator;Han,2012

4. Full surface heat transfer characteristics of rotor ventilation duct of a turbine generator

5. Research of Flow Field and Temperature Field in 2D Annular Space of Air-Gap;Tang,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3