Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells

Author:

Strobel Sophia B.ORCID,Machiraju Devayani,Hülsmeyer Ingrid,Becker Jürgen C.ORCID,Paschen Annette,Jäger Dirk,Wels Winfried S.,Bachmann MichaelORCID,Hassel Jessica C.ORCID

Abstract

Tumor antigen-specific redirection of cytotoxic T cells (CTLs) or natural killer (NK) cells including chimeric antigen receptor (CAR-) and T cell receptor (TCR-) cell therapy is currently being evaluated in different tumor entities including melanoma. Expression of melanoma-specific antigen recognized by the respective CAR or TCR directly or presented by HLA molecules is an indispensable prerequisite for this innovative therapy. In this study, we investigated in 168 FFPE tumor specimens of patients with stage I-IV melanoma the protein expression of HER2, TRP2, ABCB5, gp100, p53, and GD2 by immunohistochemistry (IHC). These results were correlated with clinical parameters. Membrane expression of HER2 and GD2 was also investigated in ten melanoma cell lines by flow cytometry for which corresponding tumors were analyzed by IHC. Our results demonstrated that gp100 was the most frequently overexpressed protein (61%), followed by TRP2 (50%), GD2 (38%), p53 (37%), ABCB5 (17%), and HER2 (3%). TRP2 expression was higher in primary tumors compared to metastases (p = 0.005). Accordingly, TRP2 and ABCB5 expression was significantly associated with lower tumor thickness of the primary (p = 0.013 and p = 0.025). There was no association between protein expression levels and survival in advanced melanoma patients. Flow cytometric analysis revealed abundant surface expression of GD2 and HER2 in all melanoma cell lines. The discordant HER2 expression in situ and in vitro suggests a tissue culture associated induction. In summary, our data support the use of gp100 and GD2 as a potential target for developing engineered TCR- or CAR-cell therapies, respectively, against melanoma.

Funder

Deutschen Konsortium für Translationale Krebsforschung

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3