Characterisation of Early Microbial Colonisers within the Spiral Colon of Pre- and Post-Natal Piglets

Author:

Nowland Tanya L.ORCID,Kirkwood Roy N.,Torok Valeria A.ORCID,Plush Kate J.,Barton Mary D.

Abstract

Initial enteric microbial colonisation influences animal health and disease, hence an understanding of the first microbial colonisers within the piglet is important. The spiral colon of piglets that were stillborn (n = 20), born-alive (n = 10), and born alive and had sucked (n = 9) were collected from 28 sows to investigate whether initial microbial colonisation occurs pre- or post-partum and how it develops during the first 24 h post-partum. To examine this, DNA was extracted and 16S rRNA amplicon analysis was performed to allow analysis of microbial communities. The results indicate that microbial colonisation of the spiral colon had occurred in stillborn pigs, suggesting microbial exposure prior to birth. Alpha diversity metrics indicated that the number of taxa and community richness were higher in piglets that sucked (p < 0.001) and community evenness was lower in stillborns in comparison to born-alive (p < 0.001) but was not affected by colostrum consumption (p < 0.001). Additionally, when compared with stillborn piglets, the bacteria colonising the spiral colon during the first 24 h post-partum included the potentially pathogenic bacteria Escherichia coli, Clostridium perfringens and Clostridium celatum, and potentially beneficial bacteria Lactobacillus reutueri and Faecalibacterium prausnitzii. The relative presence of Archaea was high in stillborn piglets but decreased with post-natal environmental exposure. It is evident that stillborn piglets have bacteria present within their spiral colon, however further studies are needed in order to determine the time at which colonisation is initiated and the mechanisms determining how colonisation occurs. Additionally, as expected, the immediate post-natal environment largely influences the microorganisms colonising, while colostrum consumption further contributes to the microbial community enrichment.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3