Service-Oriented Model Encapsulation and Selection Method for Complex System Simulation Based on Cloud Architecture

Author:

Xiong ,Zhu ,Yao ,Tang ,Xiao

Abstract

With the rise in cloud computing architecture, the development of service-oriented simulation models has gradually become a prominent topic in the field of complex system simulation. In order to support the distributed sharing of the simulation models with large computational requirements and to select the optimal service model to construct complex system simulation applications, this paper proposes a service-oriented model encapsulation and selection method. This method encapsulates models into shared simulation services, supports the distributed scheduling of model services in the network, and designs a semantic search framework which can support users in searching models according to model correlation. An optimization selection algorithm based on quality of service (QoS) is proposed to support users in customizing the weights of QoS indices and obtaining the ordered candidate model set by weighted comparison. The experimental results showed that the parallel operation of service models can effectively improve the execution efficiency of complex system simulation applications, and the performance was increased by 19.76% compared with that of scatter distribution strategy. The QoS weighted model selection method based on semantic search can support the effective search and selection of simulation models in the cloud environment according to the user’s preferences.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference30 articles.

1. The Role of Complex Analysis in Modelling Economic Growth;Angelica;Entropy,2018

2. A Behavioural Analysis of Complexity in Socio-Technical Systems under Tension Modelled by Petri Nets;Martin;Entropy,2017

3. High-performance Simulation Computer for Large-scale System-of-Systems Simulation. Journal of System Simulation;Yiping;J. Syst. Simul.,2011

4. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms

5. Grand challenges for modelling and simulation: Simulation everywhere—from cyber infrastructure to clouds to citizens;Simon;Simulation,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3