Vehicle Cornering Performance Evaluation and Enhancement Based on CAE and Experimental Analyses

Author:

Huang Hsing-HuiORCID,Tsai Ming-Jiang

Abstract

A full-vehicle analysis model was constructed incorporating a SLA (Short Long Arm) strut front suspension system and a multi-link rear suspension system. CAE (Computer Aided Engineering) simulations were then performed to investigate the lateral acceleration, yaw rate, roll rate, and steering wheel angle of the vehicle during constant radius cornering tests. The validity of the simulation results was confirmed by comparing the computed value of the understeer coefficient (Kus) with the experimental value. The validated model was then used to investigate the steady-state cornering performance of the vehicle (i.e., the roll gradient and yaw rate gain) at various speeds. The transient response of the vehicle was then examined by means of simulated impulse steering tests. The simulation results were confirmed by comparing the calculated values of the phase lag, natural frequency, yaw rate gain rate, and damping ratio at various speeds with the experimental results. A final series of experiments was then performed to evaluate the relative effects of the cornering stiffness, initial toe-in angle, and initial camber angle on the steady-state and transient-state full-vehicle cornering handling performance. The results show that the handling performance can be improved by increasing the cornering stiffness and initial toe-in angle or reducing the initial camber angle.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference15 articles.

1. Suspension Kinematics and Compliance—Measuring and Simulation;Holdmann,1998

2. Suspension Geometry and Computation;Dixon,2009

3. Analysis of Ackermann Steering Geometry;Mitchell,2006

4. Experimental Study on Relationship between Inside and Outside Steered Wheels of Motor Vehicle;Wang;Tract. Farm Transp.,2010

5. Development of Methodology for Steering Effort Improvement for Mechanical Steering in Commercial Vehicles;Upadhyay,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3