A General Approach Based on Newton’s Method and Cyclic Coordinate Descent Method for Solving the Inverse Kinematics

Author:

Chen YuhanORCID,Luo Xiao,Han Baoling,Jia Yan,Liang Guanhao,Wang Xinda

Abstract

The inverse kinematics of robot manipulators is a crucial problem with respect to automatically controlling robots. In this work, a Newton-improved cyclic coordinate descent (NICCD) method is proposed, which is suitable for robots with revolute or prismatic joints with degrees of freedom of any arbitrary number. Firstly, the inverse kinematics problem is transformed into the objective function optimization problem, which is based on the least-squares form of the angle error and the position error expressed by the product-of-exponentials formula. Thereafter, the optimization problem is solved by combining Newton’s method with the improved cyclic coordinate descent (ICCD) method. The difference between the proposed ICCD method and the traditional cyclic coordinate descent method is that consecutive prismatic joints and consecutive parallel revolute joints are treated as a whole in the former for the purposes of optimization. The ICCD algorithm has a convenient iterative formula for these two cases. In order to illustrate the performance of the NICCD method, its simulation results are compared with the well-known Newton–Raphson method using six different robot manipulators. The results suggest that, overall, the NICCD method is effective, accurate, robust, and generalizable. Moreover, it has advantages for the inverse kinematics calculations of continuous trajectories.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3