Base of Support, Step Length and Stride Width Estimation during Walking Using an Inertial and Infrared Wearable System

Author:

Rossanigo Rachele1ORCID,Caruso Marco23ORCID,Bertuletti Stefano1ORCID,Deriu Franca14ORCID,Knaflitz Marco23ORCID,Della Croce Ugo1ORCID,Cereatti Andrea3ORCID

Affiliation:

1. Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy

2. PolitoBIOMed Lab—Biomedical Engineering Lab, Politecnico di Torino, 10129 Torino, Italy

3. Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy

4. Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, 07100 Sassari, Italy

Abstract

The analysis of the stability of human gait may be effectively performed when estimates of the base of support are available. The base of support area is defined by the relative position of the feet when they are in contact with the ground and it is closely related to additional parameters such as step length and stride width. These parameters may be determined in the laboratory using either a stereophotogrammetric system or an instrumented mat. Unfortunately, their estimation in the real world is still an unaccomplished goal. This study aims at proposing a novel, compact wearable system, including a magneto-inertial measurement unit and two time-of-flight proximity sensors, suitable for the estimation of the base of support parameters. The wearable system was tested and validated on thirteen healthy adults walking at three self-selected speeds (slow, comfortable, and fast). Results were compared with the concurrent stereophotogrammetric data, used as the gold standard. The root mean square errors for the step length, stride width and base of support area varied from slow to high speed between 10–46 mm, 14–18 mm, and 39–52 cm2, respectively. The mean overlap of the base of support area as obtained with the wearable system and with the stereophotogrammetric system ranged between 70% and 89%. Thus, this study suggested that the proposed wearable solution is a valid tool for the estimation of the base of support parameters out of the laboratory.

Funder

DoMoMEA

NODES

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3