Big Data Management in Drug–Drug Interaction: A Modern Deep Learning Approach for Smart Healthcare

Author:

Salman Muhammad,Munawar Hafiz SulimanORCID,Latif Khalid,Akram Muhammad Waseem,Khan Sara Imran,Ullah FahimORCID

Abstract

The detection and classification of drug–drug interactions (DDI) from existing data are of high importance because recent reports show that DDIs are among the major causes of hospital-acquired conditions and readmissions and are also necessary for smart healthcare. Therefore, to avoid adverse drug interactions, it is necessary to have an up-to-date knowledge of DDIs. This knowledge could be extracted by applying text-processing techniques to the medical literature published in the form of ‘Big Data’ because, whenever a drug interaction is investigated, it is typically reported and published in healthcare and clinical pharmacology journals. However, it is crucial to automate the extraction of the interactions taking place between drugs because the medical literature is being published in immense volumes, and it is impossible for healthcare professionals to read and collect all of the investigated DDI reports from these Big Data. To avoid this time-consuming procedure, the Information Extraction (IE) and Relationship Extraction (RE) techniques that have been studied in depth in Natural Language Processing (NLP) could be very promising. Since 2011, a lot of research has been reported in this particular area, and there are many approaches that have been implemented that can also be applied to biomedical texts to extract DDI-related information. A benchmark corpus is also publicly available for the advancement of DDI extraction tasks. The current state-of-the-art implementations for extracting DDIs from biomedical texts has employed Support Vector Machines (SVM) or other machine learning methods that work on manually defined features and that might be the cause of the low precision and recall that have been achieved in this domain so far. Modern deep learning techniques have also been applied for the automatic extraction of DDIs from the scientific literature and have proven to be very promising for the advancement of DDI extraction tasks. As such, it is pertinent to investigate deep learning techniques for the extraction and classification of DDIs in order for them to be used in the smart healthcare domain. We proposed a deep neural network-based method (SEV-DDI: Severity-Drug–Drug Interaction) with some further-integrated units/layers to achieve higher precision and accuracy. After successfully outperforming other methods in the DDI classification task, we moved a step further and utilized the methods in a sentiment analysis task to investigate the severity of an interaction. The ability to determine the severity of a DDI will be very helpful for clinical decision support systems in making more accurate and informed decisions, ensuring the safety of the patients.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing a Deep Learning Model for recommendation of Drugs on Sentiment Analysis;2023 IEEE 3rd Mysore Sub Section International Conference (MysuruCon);2023-12-01

2. Discovering Drug-Drug Interactions Using Association Rule Mining from Electronic Health Records;2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA);2023-09-20

3. DDI-MuG: Multi-aspect graphs for drug-drug interaction extraction;Frontiers in Digital Health;2023-04-24

4. Clinical Decision Support Systems to Predict Drug–Drug Interaction Using Multilabel Long Short-Term Memory with an Autoencoder;International Journal of Environmental Research and Public Health;2023-02-02

5. A Message Passing Approach to Biomedical Relation Classification for Drug–Drug Interactions;Applied Sciences;2022-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3