Service Oriented R-ANN Knowledge Model for Social Internet of Things

Author:

S. D. MohanaORCID,Prakash S. P. ShivaORCID,Krinkin KirillORCID

Abstract

Increase in technologies around the world requires adding intelligence to the objects, and making it a smart object in an environment leads to the Social Internet of Things (SIoT). These social objects are uniquely identifiable, transferable and share information from user-to-objects and objects-to objects through interactions in a smart environment such as smart homes, smart cities and many more applications. SIoT faces certain challenges such as handling of heterogeneous objects, selection of generated data in objects, missing values in data. Therefore, the discovery and communication of meaningful patterns in data are more important for every application. Thus, the analysis of data is essential in smarter decisions and qualifies performance of data for various applications. In a smart environment, social networks of intelligent objects are increasing services and decreasing the relationship in a reliable and efficient way of sharing resources and services. Hence, this work proposed the feature selection method based on proposed semantic rules and established the relationships to classify the services using relationship artificial neural networks (R-ANN). R-ANN is an inversely proportional relationship to the objects based on certain rules and conditions between the objects to objects and users to objects. It provides the service oriented knowledge model to make decisions in the proposed R-ANN model that produces service to the users. The proposed R-ANN provides an accuracy of 89.62% for various services namely weather, air quality, parking, light status, and people presence respectively in the SIoT environment compared to the existing model.

Funder

Development program of ETU "LETI" within the framework of the program of strategic academic leadership" Priority-2030".

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3