Fog Computing for Internet of Things (IoT)-Aided Smart Grid Architectures

Author:

Hussain Md.,Beg M.M.

Abstract

The fast-paced development of power systems necessitates the smart grid (SG) to facilitate real-time control and monitoring with bidirectional communication and electricity flows. In order to meet the computational requirements for SG applications, cloud computing (CC) provides flexible resources and services shared in network, parallel processing, and omnipresent access. Even though CC model is considered to be efficient for SG, it fails to guarantee the Quality-of-Experience (QoE) requirements for the SG services, viz. latency, bandwidth, energy consumption, and network cost. Fog Computing (FC) extends CC by deploying localized computing and processing facilities into the edge of the network, offering location-awareness, low latency, and latency-sensitive analytics for mission critical requirements of SG applications. By deploying localized computing facilities at the premise of users, it pre-stores the cloud data and distributes to SG users with fast-rate local connections. In this paper, we first examine the current state of cloud based SG architectures and highlight the motivation(s) for adopting FC as a technology enabler for real-time SG analytics. We also present a three layer FC-based SG architecture, characterizing its features towards integrating massive number of Internet of Things (IoT) devices into future SG. We then propose a cost optimization model for FC that jointly investigates data consumer association, workload distribution, virtual machine placement and Quality-of-Service (QoS) constraints. The formulated model is a Mixed-Integer Nonlinear Programming (MINLP) problem which is solved using Modified Differential Evolution (MDE) algorithm. We evaluate the proposed framework on real world parameters and show that for a network with approximately 50% time critical applications, the overall service latency for FC is nearly half to that of cloud paradigm. We also observed that the FC lowers the aggregated power consumption of the generic CC model by more than 44%.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference52 articles.

1. Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions https://dblp.org/db/journals/corr/corr1704.html#0001CRC17

2. FOCAN: A Fog-supported Smart City Network Architecture for Management of Applications in the Internet of Everything Environments;Shojafar;J. Parallel Distrib. Comput.,2018

3. Cloud Computing for Smart Grid applications

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3