Reduced Complexity Sequential Digital Predistortion Technique for 5G Applications

Author:

Abdelnaby Moustafa1,Alnajjar Reem1,Bensmida Souheil2,Hammi Oualid1ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

2. Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburg EH14 4AS, UK

Abstract

Wireless communication infrastructure is a key enabling technology for smart cities. This paper investigates a novel technique to enhance the performance of 5G base stations by addressing the compensation of nonlinear distortions caused by radiofrequency power amplifiers. For this purpose, a sequential digital predistortion approach that uses twin nonlinear two-box structure along with reduced sampling rates in the feedback path is proposed to implement a linearization system. Such a system is shown to have a correction bandwidth that exceeds the bandwidth of the feedback path. This is achieved by synthesizing the predistortion function in two successive characterization iterations. Both characterizations use the same hardware, which has a reduced sampling rate in the feedback path. Hence, the proposed predistorter scheme does not require any additional hardware compared to standard schemes. Moreover, coarse delay alignment is performed while identifying the memory polynomial function in order to further reduce the computational complexity of the proposed system. Experimental results using an inverse Class-F power amplifier demonstrate the ability of the proposed predistorter to achieve a correction bandwidth of 100 MHz with a feedback sampling rate as low as 25 MSa/s.

Funder

American University of Sharjah

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3