Power Amplifier Predistortion Using Reduced Sampling Rates in the Forward and Feedback Paths

Author:

Ahmed Serien1,Ahmed Majid1,Bensmida Souheil2ORCID,Hammi Oualid1ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

2. Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburg EH14 4AS, UK

Abstract

The feasibility of implementing digital predistortion for next-generation wireless communication is faced with a dilemma due to the ever-increasing demand for faster data rates. This causes the utilized bandwidth to increase significantly, as seen in the 5G NR standard in which bandwidths as high as 400 MHz are utilized. Hence, the development of new predistortion techniques in which the forward and feedback paths operate at lower sampling rates is of utmost importance to realize efficient and practical predistortion solutions. In this work, a novel predistortion technique is presented by which the predistortion is divided between the digital and analog domains. The predistorter is composed of a memoryless AM/AM gain function that is implementable in the analog domain, and a nonlinear model with memory effects in the digital domain to relax the sampling rate requirements on both the forward and feedback paths. Experimental validation was carried out with a 20 MHz and a 40 MHz 5G signal, and the results indicate minimal linearization degradation with a sampling rate reduction of 50% and 30%, respectively. This sampling rate reduction is concurrently applied in the digital-to-analog converter of the forward path and the analog-to-digital converter of the feedback path.

Funder

American University of Sharjah

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3