Global Loss of Core 1-Derived O-Glycans in Mice Leads to High Mortality Due to Acute Kidney Failure and Gastric Ulcers

Author:

Suzuki Riku,Nakamura Yuki,Koiwai Rikako,Fuseya SayakaORCID,Murakami Yuka,Hagiwara Kozue,Sato TakashiORCID,Takahashi SatoruORCID,Kudo TakashiORCID

Abstract

The core 1 structure is the major constituent of mucin-type O-glycans, which are added via glycosylation—a posttranslational modification present on membrane-bound and secretory proteins. Core 1 β1,3-galactosyltransferase (C1galt1), an enzyme that synthesizes the core 1 structure, requires Cosmc, a C1galt1-specific molecular chaperone, for its enzymatic activity. Since Cosmc-knockout mice exhibit embryonic lethality, the biological role of core 1-derived O-glycans in the adult stage is not fully understood. We generated ubiquitous and inducible CAGCre-ERTM/Cosmc-knockout (iCAG-Cos) mice to investigate the physiological function of core 1-derived O-glycans. The iCAG-Cos mice exhibited a global loss of core 1-derived O-glycans, high mortality, and showed a drastic reduction in weights of the thymus, adipose tissue, and pancreas 10 days after Cosmc deletion. They also exhibited leukocytopenia, thrombocytopenia, severe acute pancreatitis, and atrophy of white and brown adipose tissue, as well as spontaneous gastric ulcers and severe renal dysfunction, which were considered the causes underlying the high mortality of the iCAG-Cos mice. Serological analysis indicated the iCAG-Cos mice have lower blood glucose and total blood protein levels and higher triglyceride, high-density lipoprotein, and total cholesterol levels than the controls. These data demonstrate the importance of core 1-derived O-glycans for homeostatic maintenance in adult mice.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3