Abstract
4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and k-mer composition were used to encode the DNA sequences of Geobacter pickeringii. The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in Geobacter pickeringii. The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献