DeepPGD: A Deep Learning Model for DNA Methylation Prediction Using Temporal Convolution, BiLSTM, and Attention Mechanism

Author:

Teragawa Shoryu1,Wang Lei1,Liu Yi2

Affiliation:

1. School of Software, Dalian University of Technology, Dalian 116024, China

2. School of Engineering, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350, Australia

Abstract

As part of the field of DNA methylation identification, this study tackles the challenge of enhancing recognition performance by introducing a specialized deep learning framework called DeepPGD. DNA methylation, a crucial biological modification, plays a vital role in gene expression analyses, cellular differentiation, and the study of disease progression. However, accurately and efficiently identifying DNA methylation sites remains a pivotal concern in the field of bioinformatics. The issue addressed in this paper is the presence of methylation in DNA, which is a binary classification problem. To address this, our research aimed to develop a deep learning algorithm capable of more precisely identifying these sites. The DeepPGD framework combined a dual residual structure involving Temporal convolutional networks (TCNs) and bidirectional long short-term memory (BiLSTM) networks to effectively extract intricate DNA structural and sequence features. Additionally, to meet the practical requirements of DNA methylation identification, extensive experiments were conducted across a variety of biological species. The experimental results highlighted DeepPGD’s exceptional performance across multiple evaluation metrics, including accuracy, Matthews’ correlation coefficient (MCC), and the area under the curve (AUC). In comparison to other algorithms in the same domain, DeepPGD demonstrated superior classification and predictive capabilities across various biological species datasets. This significant advancement in algorithmic prowess not only offers substantial technical support, but also holds potential for research and practical implementation within the DNA methylation identification domain. Moreover, the DeepPGD framework shows potential for application in genomics research, biomedicine, and disease diagnostics, among other fields.

Publisher

MDPI AG

Reference36 articles.

1. The epigenotype;Waddington;Int. J. Epidemiol.,2012

2. Epigenetic Mechanisms of Gene Regulation;Robertson;Epigenetics,1996

3. Epigenetics and its Research Methods;Feng;Adv. Mod. Biomed.,2017

4. Epigenetics: A Landscape Takes Shape;Goldberg;Cell,2007

5. The Landscape for Epigenetic/Epigenomic Biomedical Resources;Shakya;Epigenetics Off. J. DNA Methylation Soc.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3