Identification and Validation of Quantitative Trait Loci Mapping for Spike-Layer Uniformity in Wheat

Author:

Zhou Kunyu,Lin Yu,Jiang Xiaojun,Zhou Wanlin,Wu Fangkun,Li Caixia,Wei Yuming,Liu YaxiORCID

Abstract

Spike-layer uniformity (SLU), the consistency of the spike distribution in the vertical space, is an important trait. It directly affects the yield potential and appearance. Revealing the genetic basis of SLU will provide new insights into wheat improvement. To map the SLU-related quantitative trait loci (QTL), 300 recombinant inbred lines (RILs) that were derived from a cross between H461 and Chinese Spring were used in this study. The RILs and parents were tested in fields from two continuous years from two different pilots. Phenotypic analysis showed that H461 was more consistent in the vertical spatial distribution of the spike layer than in Chinese Spring. Based on inclusive composite interval mapping, four QTL were identified for SLU. There were two major QTL on chromosomes 2BL and 2DL and two minor QTL on chromosomes 1BS and 2BL that were identified. The additive effects of QSlu.sicau-1B, Qslu.sicau-2B-2, and QSlu.sicau-2D were all from the parent, H461. The major QTL, QSlu.sicau-2B-2 and QSlu.sicau-2D, were detected in each of the conducted trials. Based on the best linear unbiased prediction values, the two loci explained 23.97% and 15.98% of the phenotypic variation, respectively. Compared with previous studies, the two major loci were potentially novel and the two minor loci were overlapped. Based on the kompetitive allele-specific PCR (KASP) marker, the genetic effects for QSlu.sicau-2B-2 were validated in an additional RIL population. The genetic effects ranged from 26.65% to 32.56%, with an average value of 30.40%. In addition, QSlu.sicau-2B-2 showed a significant (p < 0.01) and positive influence on the spike length, spikelet number, and thousand kernel weight. The identified QTL and the developed KASP marker will be helpful for fine-mapping these loci, finally contributing to wheat breeding programs in a marker-assisted selection way.

Funder

Key Research and Development Program of Sichuan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3