Identification and Genome-Wide Association Analysis for Fusarium Crown Rot Resistance in Wheat

Author:

Lin Yu12,Chen Hao12,Yan Ning12,Li Chao3,Hou Shuai12,Mou Yuzhou12,Wu Fangkun12,Wang Zhiqiang12,Shi Haoran4,Li Caixia12,Liu Yaxi12ORCID

Affiliation:

1. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, China

2. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China

3. Sinochem Modern Agriculture Sichuan Co., Ltd., Chongzhou, Chengdu 611230, China

4. Chengdu Academy of Agriculture and Forestry Sciences, Wenjiang, Chengdu 611130, China

Abstract

Fusarium crown rot (FCR) is a fungal disease and severely decreases wheat production worldwide. Tibetan semiwild wheat, Yunnan hulled wheat, Xinjiang rice wheat, and Sichuan white wheat are four subspecies landraces endemic to western China and have rich genetic diversity in response to biotic and abiotic stresses. Here, a natural population, including 209 wheat accessions of four subspecies, was evaluated for FCR resistance. he genome-wide association study was performed using the wheat 55K single-nucleotide polymorphisms (SNPs). The results showed that the disease index (DI) ranged from 16.88 to 85.00, while six accessions showed moderate to high resistance (DI ≤ 30). Genome-wide association analysis identified 10 stable loci for FCR resistance on chromosomes 1B, 2A (5), 5A, 7A, 7B, and 7D. Four major loci—Qfcr.sicau.2A-1, Qfcr.sicau.2A-3, Qfcr.sicau.5A, and Qfcr.sicau.7D—explained 6.01 to 14.48, 9.76 to 13.11, 8.19 to 10.29, and 5.76 to 12.21% phenotypic variation, respectively. Quantitative trait loci (QTL) pyramiding analysis of these four major loci revealed that accessions with four resistance haplotypes could significantly decrease FCR severity by 9.35 to 31.61% compared with those without or with one to three resistance haplotypes. One kompetitive allele-specific PCR (KASP) marker each was successfully developed for Qfcr.sicau.2A-1 and Qfcr.sicau.7D. The KASP marker of Qfcr.sicau.2A-1 was used to genotype in an F6 recombinant inbred line population. The result showed that the lines carrying the resistance allele reduced FCR severity by 17.78%, demonstrating the importance of Qfcr.sicau.2A-1 in resistance breeding programs. Our findings provide valuable QTL and breeder-friendly PCR-based markers for applications in FCR resistance breeding programs. Our study also proved that gene pyramiding of major loci could enhance FCR resistance.

Funder

Key Research and Development Program of Sichuan Province

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3