Analysis on Water Inrush Process of Tunnel with Large Buried Depth and High Water Pressure

Author:

Yang Weimin,Fang Zhongdong,Wang Hao,Li Liping,Shi ShaoshuaiORCID,Ding Ruosong,Bu Lin,Wang Meixia

Abstract

In order to explore the catastrophic evolution process for karst cave water inrush in large buried depth and high water pressure tunnels, a model test system was developed, and a similar fluid–solid coupled material was found. A model of the catastrophic evolution of water inrush was developed based on the Xiema Tunnel, and the experimental section was simulated using the finite element method. By analyzing the interaction between groundwater and the surrounding rocks during tunnel excavation, the law of occurrence of water inrush disaster was summarized. The water inrush process of a karst cave containing high-pressure water was divided into three stages: the production of a water flowing fracture, the expansion of the water flowing fracture, and the connection of the water flowing fracture. The main cause of water inrush in karst caves is the penetration and weakening of high-pressure water on the surrounding rock. This effect is becoming more and more obvious as tunnel excavation progresses. The numerical simulation results showed that the outburst prevention thickness of the surrounding rock is 4.5 m, and that of the model test result is 5 m. Thus, the results of the two methods are relatively close to each other. This work is important for studying the impact of groundwater on underground engineering, and it is of great significance to avoid water inrush in tunnels.

Funder

National Natural Science Foundation of China

Shandong Postdoctoral Innovation Project Special Foundation

Natural Science Foundation of Shandong Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3