Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding

Author:

Li Haidong1,Wang Haifeng2,Wang Shijie1,Yang Yange2,Niu Yunsong2,Zhu Shenglong2,Wang Fuhui3

Affiliation:

1. AVIC Xi’an Flight Automatic Control Research Institute, Xi’an 710065, China

2. Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

3. Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China

Abstract

To solve the problems of high nitriding temperature and long nitriding time with conventional plasma nitriding technologies, a kind of low-temperature plasma oxy-nitriding technology containing two-stage processes with different ratios of N to O was developed on a TC4 alloy in this paper. A thicker permeation coating can be obtained with this new technology compared to conventional plasma nitriding technology. The reason for this is that the oxygen introduction in the first two-hour oxy-nitriding step can break the continuous TiN layer, which facilitates the quick and deep diffusion of the solution-strengthening elements of O and N into the titanium alloy. Moreover, an inter-connected porous structure was formed under a compact compound layer, which acts as a buffer layer to absorb the external wear force. Therefore, the resultant coating showed the lowest COF values during the initial wear state, and almost no debris and cracks were detected after the wear test. For the treated samples with low hardness and no porous structure, fatigue cracks can easily form on the surface, and bulk peeling-offcan occur during the wear course.

Funder

Civil Aircraft Special Scientific Research Project

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3