Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing

Author:

Xu Mofei123,Yu Xiang123,Zhang Shijian123,Yan Sha4,Tarbokov Vladislav5ORCID,Remnev Gennady15,Le Xiaoyun123

Affiliation:

1. School of Physics, Beihang University, Beijing 100191, China

2. Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engneering, Beihang University, Beijing 100191, China

3. Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China

4. Institute of Heavy Ion Physics, Peking University, Beijing 100871, China

5. School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia

Abstract

The unique flash heating characteristics of intense pulsed ion beams (IPIB) offer potential advantages to fabricate high-performance coatings with non-equilibrium structures. In this study, titanium-chromium (Ti-Cr) alloy coatings are prepared through magnetron sputtering and successive IPIB irradiation, and the feasibility of IPIB melt mixing (IPIBMM) for a film-substrate system is verified via finite elements analysis. The experimental results reveal that the melting depth is 1.15 μm under IPIB irradiation, which is in close agreement with the calculation value (1.18 μm). The film and substrate form a Ti-Cr alloy coating by IPIBMM. The coating has a continuous gradient composition distribution, metallurgically bonding on the Ti substrate via IPIBMM. Increasing the IPIB pulse number leads to more complete element mixing and the elimination of surface cracks and craters. Additionally, the IPIB irradiation induces the formation of supersaturated solid solutions, lattice transition, and preferred orientation change, contributing to an increase in hardness and a decrease in elastic modulus with continuous irradiation. Notably, the coating treated with 20 pulses demonstrates a remarkable hardness (4.8 GPa), more than twice that of pure Ti, and a lower elastic modulus (100.3 GPa), 20% less than that of pure Ti. The analysis of the load-displacement curves and H-E ratios indicates that the Ti-Cr alloy coated samples exhibit better plasticity and wear resistance compared to pure Ti. Specifically, the coating formed after 20 pulses exhibits exceptional wear resistance, as demonstrated by its H3/E2 value being 14 times higher than that of pure Ti. This development provides an efficient and eco-friendly method for designing robust-adhesion coatings with specific structures, which can be extended to various bi- or multi-element material systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3