LCF and HCF of Short Carbon Fibers Reinforced AE42 Mg Alloy

Author:

Alsaleh Naser A.1ORCID,Ataya Sabbah12ORCID,Latief Fahamsyah H.3,Ahmed Mohamed M. Z.4ORCID,Ataya Ahmed5ORCID,Abdul-Latif Akrum6

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia

2. Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43512, Egypt

3. Department of Mechanical Engineering, Faculty of Engineering and Science, Universitas Nasional, Jakarta 12520, Indonesia

4. Department of Mechanical Engineering, College of Engineering at Al Kharj, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia

5. Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA

6. Université Paris 8, IUT de Tremblay, 93290 Tremblay-en-France, France

Abstract

Lightweight magnesium alloys and magnesium matrix composites have recently become more widespread for high-efficiency applications, including automobile, aerospace, defense, and electronic industries. Cast magnesium and magnesium matrix composites are applied in many highly moving and rotating parts, these parts can suffer from fatigue loading and are consequently subjected to fatigue failure. Reversed tensile-compression low-cycle fatigue (LCF) and high-cycle fatigue (HCF) of short fibers reinforced and unreinforced AE42 have been studied at temperatures of 20 °C, 150 °C, and 250 °C. To select suitable fatigue testing conditions, tensile tests have been carried out on AE42 and the composite material AE42-C at temperatures of up to 300 °C. The Wohler curves σa (NF) have shown that the fatigue strength of the reinforced AE42-C in the HCF range was double that of unreinforced AE42. In the LCF range at certain strain amplitudes, the fatigue life of the composite materials is much less than that of the matrix alloys, this is due to the low ductility of this composite material. Furthermore, a slight temperature influence up to 150 °C has been established on the fatigue behavior of the AE42-C. The fatigue life curves Δεtotal (NF) were described using the Basquin and Manson–Coffin approaches. Fracture surface investigations showed a mixed mode of serration fatigue pattern on the matrix and carbon fibers fracturing and debonding from the matrix alloy.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

General Materials Science

Reference62 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3