Fatigue and Fracture Behaviors of Short Carbon Fiber Reinforced Squeeze Cast AZ91 at 20 °C and 250 °C

Author:

Alrasheedi Nashmi H.1,El-Sayed Seleman Mohamed M.2ORCID,Ahmed Mohamed M. Z.3ORCID,Ataya Sabbah1ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia

2. Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43512, Egypt

3. Mechanical Engineering Department, College of Engineering at Al Kharj, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia

Abstract

AZ91 is one of the most broadly used Mg alloys because of its good castability and reasonable mechanical properties. Strengthening AZ91 with carbon short fibers aims to increase tensile and fatigue strength, creep, and wear resistance. One of the proposed applications of reinforced AZ91 is the production of pistons for trucks. Such reciprocating parts are subjected to alternating fatigue loads which can lead to fatigue failure. In this respect, studying the tensile and fatigue behavior of materials subjected to such loading conditions is of great interest. The alternating low-cycle fatigue (LCF) and high-cycle fatigue (HCF) of unreinforced AZ91 and carbon fiber-reinforced AZ91 (AZ91-C) were investigated at 20 °C and 250 °C. Tensile tests were carried out at the same testing temperature to find the appropriate fatigue testing stress and strain for stress-controlled and strain-controlled tests, respectively. The fatigue curves of stress against the number of cycles (S–N) revealed that the composite AZ91-C’s fatigue strength was 55 MPa under HCF, while that of the matrix alloy AZ91 was only 37 MPa at 250 °C. Fracture investigations were conducted on the broken test samples. The fracture approach in the matrix material (AZ91) is mixed ductile/brittle containing fatigue serration, fiber fracture, and separation in the reinforced material (AZ91-C).

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University, Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3