Koch Hierarchical Honeycomb: A Fractal-Based Design for Enhanced Mechanical Performance and Energy Absorption

Author:

Zhu Yuwen1234,Deng Junjie1234,Xiong Wei1234,You Tianyu1234,Zhou Wei1234

Affiliation:

1. School of Traffic & Transportation Engineering, Central South University, Changsha 410017, China

2. The State Key Laboratory of Heavy-Duty and Express High-Power Electric Locomotive, Changsha 410017, China

3. National & Local Joint Engineering Research Center of Safety Technology for Rail Vehicle, Changsha 410017, China

4. Key Laboratory of Traffic Safety on Track (Central South University), Ministry of Education, Changsha 410017, China

Abstract

A novel energy-absorbing structure, the Koch hierarchical honeycomb, which combines the Koch geometry with a conventional honeycomb structure, is proposed in this work. Adopting a hierarchical design concept using Koch has improved the novel structure more than the honeycomb. The mechanical properties of this novel structure under impact loading are studied by finite element simulation and compared with the conventional honeycomb structure. To effectively verify the reliability of the simulation analysis, quasi-static compression experiments were conducted on 3D-printed specimens. The results of the study showed that the first-order Koch hierarchical honeycomb structure increased the specific energy absorption by 27.52% compared to the conventional honeycomb structure. Furthermore, the highest specific energy absorption can be obtained by increasing the hierarchical order to 2. Moreover, the energy absorption of triangular and square hierarchies can be significantly increased. All achievements in this study provide significant guidelines in the reinforcement design of lightweight structures.

Funder

National Key R&D Program of China

China Postdoctoral Science Foundation

Training Program for Excellent Young Innovators of Changsha

Central South University Research Programmer of Advanced Interdisciplinary Studies

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3