Affiliation:
1. School of Mechanical Engineering, Guangxi University, Nanning 530004, P. R. China
2. School of Electronics and Information Engineering, Wuzhou University, Wuzhou 543002, P. R. China
Abstract
This paper presents a novel approach to enhance the energy absorption (EA) of honeycombs in the out-of-plane direction. Inspired by the Koch fractal, a fractal hexagonal honeycomb (FHH) is presented in this paper. In our study, we use Abaqus/Explicit to build a finite element model of the honeycomb, through which we conduct a series of studies on the performance of this honeycomb. Initially, we compare the mechanical properties and deformation modes of the FHH with those of a conventional hexagonal honeycomb. The results demonstrate notable improvements in crashworthiness metrics for the FHH, including a 52% increase in specific EA, a 45% enhancement in crushing load efficiency (CLE), and an 8% reduction in peak crushing force (PCF) compared to the conventional counterpart. Subsequently, this paper investigates the fractal arc honeycomb and evaluates the effect of the center angle on mechanical properties by varying its value. Furthermore, the mechanical properties of layered honeycomb and fractal honeycomb structures with different wall thicknesses are systematically examined. In the last section, we explore the theoretical analysis of the fractal-hexagonal honeycomb and find that the results of the theoretical analysis are in good agreement with those of the simulation, indicating that the experimental simulation results are reliable. Overall, the findings of this study offer valuable insights for the innovative design of hexagonal honeycomb structures, providing a reference for future advancements in this field.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd