Effects of Different Materials on Residual Stress Fields of Blade Damaged by Foreign Objects

Author:

Yin Wangtian1,Liu Yongbao1,He Xing1,Li Hongsong1

Affiliation:

1. College of Power Engineering, Naval University of Engineering, Wuhan 430033, China

Abstract

Foreign object damage (FOD) is a common mode of failure in high-speed rotating machinery, such as aircraft engines. Therefore, research on FOD is crucial for ensuring blade integrity. FOD induces residual stress on the surface and within the blade, impacting its fatigue strength and service life. Therefore, this paper utilizes material parameters determined by existing experiments, based on the Johnson–Cook (J-C) constitutive model, to numerically simulate impact damage inflicted on specimens, compare and analyze the residual stress distribution of impact pits, and investigate the influence law of foreign object characteristics on blade residual stress. TC4 titanium alloy, 2A12 aluminum alloy, and Q235 steel were selected as foreign objects, and dynamic numerical simulations of the blade impact process were performed to explore the effects of different types of metal foreign objects. This study analyzes the influence of different materials and foreign objects on the residual stress generated by blade impact through numerical simulation, examining the distribution of residual stress in different directions. The findings indicate that the generated residual stress increases with the density of the materials. Additionally, the geometry of the impact notch is also influenced by the density difference between the impact material and the blade. The distribution of the residual stress field reveals that the maximum residual tensile stress in the blade is related to the density ratio, and the residual tensile stress in the axial and circumferential direction is relatively large. It is important to note that a significant residual tensile stress has a detrimental effect on the fatigue strength.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3