Unsteady Flow Field Characterization of Effusion Cooling Systems with Swirling Main Flow: Comparison Between Cylindrical and Shaped Holes

Author:

Lenzi Tommaso,Picchi AlessioORCID,Bacci TommasoORCID,Andreini Antonio,Facchini Bruno

Abstract

The presence of injectors with strongly swirled flows, used to promote flame stability in the combustion chambers of gas turbines, influences the behaviour of the effusion cooling jets and consequently of the liner’s cooling capabilities. For this reason, unsteady behaviour of the jets in the presence of swirling flow requires a characterization by means of experimental flow field analyses. The experimental setup of this work consists of a non-reactive single-sector linear combustor test rig, scaled up with respect to the real engine geometry to increase spatial resolution and to reduce the frequencies of the unsteadiness. It is equipped with a radial swirler and multi-perforated effusion plates to simulate the liner cooling system. Two effusion plates were tested and compared: with cylindrical and with laid-back fan-shaped 7-7-7 holes in staggered arrangement. Time resolved Particle Image Velocimetry has been carried out: the unsteady characteristics of the jets, promoted by the intermittent interactions with the turbulent mainstream, have been investigated as their vortex structures and turbulent decay. The results demonstrate how an unsteady analysis is necessary to provide a complete characterization of the coolant behaviour and of its turbulent mixing with mainflow, which affect, in turn, the film cooling capability and liner’s lifetime.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3