Analysis of Swirl Number Effects on Effusion Flow Behavior Using Time-Resolved Particle Image Velocimetry

Author:

Lenzi Tommaso1,Picchi Alessio1,Andreini Antonio1,Facchini Bruno1

Affiliation:

1. DIEF, Department of Industrial Engineering, University of Florence, Florence 50139, Italy

Abstract

Abstract The analysis of the interaction between the swirling and cooling flows, promoted by the liner film cooling system, is a fundamental task for the design of turbine combustion chambers since it influences different aspects such as emissions and cooling capability. In particular, high turbulence values, flow instabilities, and tangential velocity components induced by the swirling flow deeply affect the behavior of effusion cooling jets, demanding for dedicated time-resolved near-wall experimental analysis. The experimental setup of this work consists of a non-reactive single sector linear combustor test rig scaled up with respect to engine dimensions; the test section was equipped with an effusion plate with standard inclined cylindrical holes to simulate the liner cooling system. The rig was instrumented with a 2D time-resolved particle image velocimetry system, focused on different field of views. The degree of swirl for a swirling flow is usually characterized by the swirl number, Sn, defined as the ratio of the tangential momentum flux to axial momentum flux. To assess the impact of such parameter on the near-wall effusion behavior, a set of three different axial swirlers with swirl number equal to Sn = 0.6–0.8–1.0 were designed and tested in the experimental apparatus. An analysis of the main flow field by varying the Sn was first performed in terms of average velocity, root mean square, and Tu values, providing kinetic energy spectra and turbulence length scale information. In a second step, the analysis was focused on the near-wall regions: the strong effects of Sn on the coolant jets were quantified in terms of vorticity analysis and jet oscillation.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3